
Genetic Algorithms

Dr. Mahmoud Nabil Mahmoud
mnmahmoud@ncat.edu

North Carolina A & T State University

September 6, 2021

September 6, 2021 1 / 31



Components of GA

Parameter set: How we encode each individual in the search space?
What is the search space?

Population: How to initialize the population?

Fitness function: How to evaluate each individual?

Operators: Selection, Crossover, Mutation.

September 6, 2021 2 / 31



Traveling Sales Man Problem

Outline

1 Traveling Sales Man Problem

2 Path Planning

3 The N-Queen Problem

4 The Knapsack Problem

September 6, 2021 3 / 31



Traveling Sales Man Problem

Traveling Sales Man Problem

Given a list of cities and the coordinates of each city, what is the shortest
possible route that visits each city exactly once and returns to the origin
city?

How many possible solutions to travel through 48 states?

September 6, 2021 4 / 31



Traveling Sales Man Problem

TSP Search space

TSP Depth of Search Space
4 24

10 3628800

20 2.4 × 1018

50 3.04 × 1064

100 9.3 × 10157

200 > 1 × 10500

September 6, 2021 5 / 31



Traveling Sales Man Problem

Parameter Set

Each individual can encode the cities traveled

Length of each chromosome equal to the number of cities

Integer representation chromosome.

Ex.

For seven cities an individual 3 5 1 7 8 2 6 4

September 6, 2021 6 / 31



Traveling Sales Man Problem

Population example

Population Example 20 cities:
03 15 01 07 . . . 08 12 06 04
08 11 03 04 . . . 05 17 02 06
04 06 20 07 . . . 08 05 01 03
01 15 16 03 . . . 02 17 08 04
02 04 07 01 . . . 08 13 06 05

September 6, 2021 7 / 31



Traveling Sales Man Problem

Fitness Function

We can set our fitness function as the inverse of the number of dead queens.

fitness(x) = 1
1+total distance(path)

Another way for this problem is to scale the fitness exponentially if all the
distances are very close such as

fitness(x) = e
constant

1+total distance(path)

September 6, 2021 8 / 31



Traveling Sales Man Problem

Cross Over

1 Generate a binary template at random that has the same length a the
parents.

2 Copy the positions of Parent 1 to Child 1 wherever the binary,
template contains a ”1”.

3 Fill the remaining elements that complete the list of the cities from
Parent 2.

4 You can do the same with Child 2.

September 6, 2021 9 / 31



Traveling Sales Man Problem

Cross Over

1 Generate a binary template at random that has the same length a the
parents.

2 Copy the positions of Parent 1 to Child 1 wherever the binary,
template contains a ”1”.

3 Fill the remaining elements that complete the list of the cities from
Parent 2.

4 You can do the same with Child 2.

September 6, 2021 9 / 31



Traveling Sales Man Problem

Cross Over

1 Generate a binary template at random that has the same length a the
parents.

2 Copy the positions of Parent 1 to Child 1 wherever the binary,
template contains a ”1”.

3 Fill the remaining elements that complete the list of the cities from
Parent 2.

4 You can do the same with Child 2.

September 6, 2021 9 / 31



Traveling Sales Man Problem

Cross Over

1 Generate a binary template at random that has the same length a the
parents.

2 Copy the positions of Parent 1 to Child 1 wherever the binary,
template contains a ”1”.

3 Fill the remaining elements that complete the list of the cities from
Parent 2.

4 You can do the same with Child 2.

September 6, 2021 9 / 31



Traveling Sales Man Problem

Mutation

Swap-based: Two cities are selected at random, and their positions
are interchanged.

Scramble: Two positions within a string are selected at random, all of
the cities between the two positions are randomly ordered.

September 6, 2021 10 / 31



Path Planning

Outline

1 Traveling Sales Man Problem

2 Path Planning

3 The N-Queen Problem

4 The Knapsack Problem

September 6, 2021 11 / 31



Path Planning

Path Planning

Find a path from a source to a destination point.

Does not have to be the shortest path

May be there are some obstacles

Assume 2d movement:

September 6, 2021 12 / 31



Path Planning

Parameter Set

Assume Maximum Number of moves to reach the goal is N

Ex.
N = 8
-1 0 0 1 0 0 1 1 ∣ 0 1 1 0 1 1 0 1

1 (-1,0)

2 (0,1)

3 (0,1)

4 (1,0)

5 (0,1)

6 (0,1)

7 (1,0)

8 (1,1)

September 6, 2021 13 / 31



Path Planning

Population example

-1 0 0 1 0 0 1 1 ∣ 0 1 1 0 1 1 0 1
1 -1 0 1 1 1 0 1 ∣ 1 -1 1 0 1 0 0 1
1 -1 1 0 1 0 0 1 ∣ 0 0 1 0 1 -1 0 1
-1 0 0 1 0 0 1 1 ∣ 0 -1 1 0 1 1 0 0
-1 1 1 1 0 0 1 1 ∣ 0 1 1 -1 1 1 0 0

September 6, 2021 14 / 31



Path Planning

Fitness Function

We can set our fitness function as the inverse of the number of dead queens.

fitness(x) = 1
1+distance(goal,pathendpoint)

Small distance means more fit.

Can be updated to include obstacles effect.

September 6, 2021 15 / 31



Path Planning

Cross Over

1 Generate a binary template at random that has the same length a the
parents.

2 Copy the positions of Parent 1 to Child 1 wherever the binary,
template contains a ”1”.

3 Fill the remaining elements that complete the list of the cities from
Parent 2.

4 You can do the same with Child 2.

September 6, 2021 16 / 31



Path Planning

Cross Over

1 Generate a binary template at random that has the same length a the
parents.

2 Copy the positions of Parent 1 to Child 1 wherever the binary,
template contains a ”1”.

3 Fill the remaining elements that complete the list of the cities from
Parent 2.

4 You can do the same with Child 2.

September 6, 2021 16 / 31



Path Planning

Cross Over

1 Generate a binary template at random that has the same length a the
parents.

2 Copy the positions of Parent 1 to Child 1 wherever the binary,
template contains a ”1”.

3 Fill the remaining elements that complete the list of the cities from
Parent 2.

4 You can do the same with Child 2.

September 6, 2021 16 / 31



Path Planning

Cross Over

1 Generate a binary template at random that has the same length a the
parents.

2 Copy the positions of Parent 1 to Child 1 wherever the binary,
template contains a ”1”.

3 Fill the remaining elements that complete the list of the cities from
Parent 2.

4 You can do the same with Child 2.

September 6, 2021 16 / 31



Path Planning

Mutation

Any movement can be flipped in the x and/or y positions to {0,1,2}
Also know as random resetting.

September 6, 2021 17 / 31



The N-Queen Problem

Outline

1 Traveling Sales Man Problem

2 Path Planning

3 The N-Queen Problem

4 The Knapsack Problem

September 6, 2021 18 / 31



The N-Queen Problem

The N queen Problem

This is the problem of placing N queens on a regular N × N chessboard so
that no two of them can check each other.
Ex. Let N = 4

1 2 3 4
1
2
3
4

Search space is N2
CN

September 6, 2021 19 / 31



The N-Queen Problem

The N queen Problem

This is the problem of placing N queens on a regular N × N chessboard so
that no two of them can check each other.
Ex. Let N = 4

1 2 3 4
1
2
3
4

Search space is N2
CN

September 6, 2021 19 / 31



The N-Queen Problem

N-Queen Search space

N-Queens Depth of Search Space
4 1.8 × 103

10 1.7 × 1013

20 2.8 × 1033

50 1.6 × 1033

100 6.5 × 10241

200 > 1 × 10500

September 6, 2021 20 / 31



The N-Queen Problem

Parameter set

1 2 3 4 5 6 7 8
1 x

2 x

3 x

4 x

5 x

6 x

7 x

8 x

String individual: 3 5 1 7 8 2 6 4
Sequence of 8 unique numbers from 1 to 8.

Search space reduced to N!

September 6, 2021 21 / 31



The N-Queen Problem

Parameter set

1 2 3 4 5 6 7 8
1 x

2 x

3 x

4 x

5 x

6 x

7 x

8 x

String individual: 3 5 1 7 8 2 6 4
Sequence of 8 unique numbers from 1 to 8.

Search space reduced to N!

September 6, 2021 21 / 31



The N-Queen Problem

Population Example

Population Example:
3 5 1 7 8 2 6 4
8 1 3 4 5 7 2 6
4 6 2 7 8 5 1 3
1 5 6 3 2 7 8 4
2 4 7 1 8 3 6 5

1 2 3 4 5 6 7 8
1 x

2 x

3 x

4 x

5 x

6 x

7 x

8 x

September 6, 2021 22 / 31



The N-Queen Problem

Fitness Function

We can set our fitness function as the inverse of the number of dead queens.

fitness(x) = 1
1+dead-queens(x)

This way, our fitness function reaches a maximum of 1 whenever the number
of dead queens is 0. Ex.

What is the fitness of 3 5 1 7 8 2 6 4?

September 6, 2021 23 / 31



The N-Queen Problem

Crossover operator

1 Generate a binary template at random that has the same length a the
parents.

2 Copy the positions of Parent 1 to Child 1 wherever the binary,
template contains a ”1”.

3 Create a list of the elements that correspond to a ”0” in the binary:
template from Parent 1.

4 Permute these elements so that they are in the same order as the: are
in Parent 2.

5 Supply the gaps in Child 1 with the permuted elements in the orde
generated in step 4.

6 Create Child 2 using a similar process.

September 6, 2021 24 / 31



The N-Queen Problem

Crossover operator

1 Generate a binary template at random that has the same length a the
parents.

2 Copy the positions of Parent 1 to Child 1 wherever the binary,
template contains a ”1”.

3 Create a list of the elements that correspond to a ”0” in the binary:
template from Parent 1.

4 Permute these elements so that they are in the same order as the: are
in Parent 2.

5 Supply the gaps in Child 1 with the permuted elements in the orde
generated in step 4.

6 Create Child 2 using a similar process.

September 6, 2021 24 / 31



The N-Queen Problem

Crossover operator

1 Generate a binary template at random that has the same length a the
parents.

2 Copy the positions of Parent 1 to Child 1 wherever the binary,
template contains a ”1”.

3 Create a list of the elements that correspond to a ”0” in the binary:
template from Parent 1.

4 Permute these elements so that they are in the same order as the: are
in Parent 2.

5 Supply the gaps in Child 1 with the permuted elements in the orde
generated in step 4.

6 Create Child 2 using a similar process.

September 6, 2021 24 / 31



The N-Queen Problem

Crossover operator

1 Generate a binary template at random that has the same length a the
parents.

2 Copy the positions of Parent 1 to Child 1 wherever the binary,
template contains a ”1”.

3 Create a list of the elements that correspond to a ”0” in the binary:
template from Parent 1.

4 Permute these elements so that they are in the same order as the: are
in Parent 2.

5 Supply the gaps in Child 1 with the permuted elements in the orde
generated in step 4.

6 Create Child 2 using a similar process.

September 6, 2021 24 / 31



The N-Queen Problem

Crossover operator

1 Generate a binary template at random that has the same length a the
parents.

2 Copy the positions of Parent 1 to Child 1 wherever the binary,
template contains a ”1”.

3 Create a list of the elements that correspond to a ”0” in the binary:
template from Parent 1.

4 Permute these elements so that they are in the same order as the: are
in Parent 2.

5 Supply the gaps in Child 1 with the permuted elements in the orde
generated in step 4.

6 Create Child 2 using a similar process.

September 6, 2021 24 / 31



The N-Queen Problem

Crossover operator

1 Generate a binary template at random that has the same length a the
parents.

2 Copy the positions of Parent 1 to Child 1 wherever the binary,
template contains a ”1”.

3 Create a list of the elements that correspond to a ”0” in the binary:
template from Parent 1.

4 Permute these elements so that they are in the same order as the: are
in Parent 2.

5 Supply the gaps in Child 1 with the permuted elements in the orde
generated in step 4.

6 Create Child 2 using a similar process.

September 6, 2021 24 / 31



The N-Queen Problem

Crossover operator

Select two parents

Parent1: 1 2 3 4 5 6 7 8
Parent2: 8 6 4 2 7 5 3 1

Form a template

Template: 0 1 1 0 1 1 0 0

Apply the template to the parents

Child1: - 2 3 - 5 6 - -
Child2: 8 - - 2 - - 3 1

Fill in the gaps to create final children

Child1: 8 2 3 4 5 6 7 1
Child2: 8 4 5 2 6 7 3 1

September 6, 2021 25 / 31



The N-Queen Problem

Mutation operator

Homaifar et al [92].

Order-based: Two queens are selected at random, and their positions
are interchanged.

Scramble: Two positions within a string are selected at random, all of
the queens between the two positions are randomly ordered.

September 6, 2021 26 / 31



The Knapsack Problem

Outline

1 Traveling Sales Man Problem

2 Path Planning

3 The N-Queen Problem

4 The Knapsack Problem

September 6, 2021 27 / 31



The Knapsack Problem

The Knapsack Problem

We are given a set of n items, each of which has attached to it some value
vi , and some cost ci

The task is to select a subset of those items that maximizes the sum of the
values, while keeping the summed cost within some capacity Cmax

September 6, 2021 28 / 31



The Knapsack Problem

Components of GA

Parameter set:

A Binary string of length n, where a 1 in a given position indicates that
an item is included and a 0 that it is omitted.
2n search space

Population

Set of binary string each of length n.

Objective function:

Given allele gi

f (x) =
⎧⎪⎪⎨⎪⎪⎩

−1 if ∑n
i=1 ci × gi ≤ Cmax

∑n
i=1 vi × gi otherwise

Operators: Same as before

September 6, 2021 29 / 31



The Knapsack Problem

Components of GA

Parameter set:

A Binary string of length n, where a 1 in a given position indicates that
an item is included and a 0 that it is omitted.

2n search space

Population

Set of binary string each of length n.

Objective function:

Given allele gi

f (x) =
⎧⎪⎪⎨⎪⎪⎩

−1 if ∑n
i=1 ci × gi ≤ Cmax

∑n
i=1 vi × gi otherwise

Operators: Same as before

September 6, 2021 29 / 31



The Knapsack Problem

Components of GA

Parameter set:

A Binary string of length n, where a 1 in a given position indicates that
an item is included and a 0 that it is omitted.
2n search space

Population

Set of binary string each of length n.

Objective function:

Given allele gi

f (x) =
⎧⎪⎪⎨⎪⎪⎩

−1 if ∑n
i=1 ci × gi ≤ Cmax

∑n
i=1 vi × gi otherwise

Operators: Same as before

September 6, 2021 29 / 31



The Knapsack Problem

Components of GA

Parameter set:

A Binary string of length n, where a 1 in a given position indicates that
an item is included and a 0 that it is omitted.
2n search space

Population

Set of binary string each of length n.

Objective function:

Given allele gi

f (x) =
⎧⎪⎪⎨⎪⎪⎩

−1 if ∑n
i=1 ci × gi ≤ Cmax

∑n
i=1 vi × gi otherwise

Operators: Same as before

September 6, 2021 29 / 31



The Knapsack Problem

Components of GA

Parameter set:

A Binary string of length n, where a 1 in a given position indicates that
an item is included and a 0 that it is omitted.
2n search space

Population

Set of binary string each of length n.

Objective function:

Given allele gi

f (x) =
⎧⎪⎪⎨⎪⎪⎩

−1 if ∑n
i=1 ci × gi ≤ Cmax

∑n
i=1 vi × gi otherwise

Operators: Same as before

September 6, 2021 29 / 31



The Knapsack Problem

Components of GA

Parameter set:

A Binary string of length n, where a 1 in a given position indicates that
an item is included and a 0 that it is omitted.
2n search space

Population

Set of binary string each of length n.

Objective function:

Given allele gi

f (x) =
⎧⎪⎪⎨⎪⎪⎩

−1 if ∑n
i=1 ci × gi ≤ Cmax

∑n
i=1 vi × gi otherwise

Operators: Same as before

September 6, 2021 29 / 31



The Knapsack Problem

Components of GA

Parameter set:

A Binary string of length n, where a 1 in a given position indicates that
an item is included and a 0 that it is omitted.
2n search space

Population

Set of binary string each of length n.

Objective function:

Given allele gi

f (x) =
⎧⎪⎪⎨⎪⎪⎩

−1 if ∑n
i=1 ci × gi ≤ Cmax

∑n
i=1 vi × gi otherwise

Operators: Same as before

September 6, 2021 29 / 31



The Knapsack Problem

Components of GA

Parameter set:

A Binary string of length n, where a 1 in a given position indicates that
an item is included and a 0 that it is omitted.
2n search space

Population

Set of binary string each of length n.

Objective function:

Given allele gi

f (x) =
⎧⎪⎪⎨⎪⎪⎩

−1 if ∑n
i=1 ci × gi ≤ Cmax

∑n
i=1 vi × gi otherwise

Operators: Same as before

September 6, 2021 29 / 31



The Knapsack Problem

Components of GA

Parameter set:

A Binary string of length n, where a 1 in a given position indicates that
an item is included and a 0 that it is omitted.
2n search space

Population

Set of binary string each of length n.

Objective function:

Given allele gi

f (x) =
⎧⎪⎪⎨⎪⎪⎩

−1 if ∑n
i=1 ci × gi ≤ Cmax

∑n
i=1 vi × gi otherwise

Operators: Same as before

September 6, 2021 29 / 31



The Knapsack Problem

References

Goldenberg, D.E., 1989. Genetic algorithms in search, optimization
and machine learning.

Michalewicz, Z., 2013. Genetic algorithms + data structures=
evolution programs. Springer Science & Business Media

September 6, 2021 30 / 31



The Knapsack Problem

Questions

September 6, 2021 31 / 31


	Traveling Sales Man Problem
	Path Planning
	The N-Queen Problem
	 The Knapsack Problem

